cwlr.net
当前位置:首页 >> python sklEArn逻辑回归怎么导出概率值 >>

python sklEArn逻辑回归怎么导出概率值

可以使用机器学习,使用很方便(相当于别人早已经把具体过程做好了,像公式、模板一样自己代入数据就可以得到结果) from sklearn.linear_model import LogisticRegression

from sklearn import linear_model#线性回归clf = linear_model.LinearRegression()#训练clf.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])#表达式参数clf.coef_#测试improt numpy as npx = np.array([1,1])y = x.dot(clf.coef_)

from sklearn import linear_model#线性回归clf = linear_model.LinearRegression()#训练clf.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])#表达式参数clf.coef_#测试improt numpy as npx = np.array([1,1])y = x.dot(clf.coef_)

from sklearn.svm import SVCmodel = SVC()model.fit(X_train, y_train)model.predict(X_test) # 输出类别model.predict_proba(X_test) # 输出分类概率model.predict_log_proba(X_test) # 输出分类概率的对数

python的机器学习模块sklearn(Google公司开始投资,是大数据战略的一个步骤)可以用于模式识别,用在一般知识发现,例如户外参与人口的类型,sklearn包自己带了两个数据集,其中一个是鸢尾花数据库(iris,鸢尾花) from sklearn import datase...

最近在拿 sklearn 做中文文本分类器, 网上找到的例子都是拿带标签的数据,二八划分后,八成用于训练模型,两成用于测试, 然后分析测试结果看精确度。 现在,我已经使用训练数据做好了模型训练(存在文本分类器的对象了), 拿一段之前数据集里...

1首先需要安装Cython网载进行本安装pythonsetup.pyinstall2载Sklearn包进行本安装(使用pip或easy_install总错cannotimportmurmurhash3_32终本安装功)3安装用nosetests-vsklearn进行测试

写入excel表时有两种写入xls和csv,但建议少使用csv,不然在表中调整数据格式时,保存时一直询问你是否保存新格式,很麻烦。 而在读取数据时,如果指定了哪一张sheet,则在pycharm又会出现格式不对齐。 还有将数据写入表格中时,excel会自动给你...

决策树学习可能创建一个过于复杂的树,并不能很好的预测数据。也就是过拟合。 修剪机制(现在不支持),设置一个叶子节点需要的最小样本数量,或者数的最大深度,可以避免过拟合。

1 首先需要安装Cython,网上下载后进行本地安装 Python setup.py install 2 下载Sklearn包 ,进行本地安装(使用pip或easy_install总是出错,如can not import murmurhash3_32,最终本地安装成功) 3 安装后可用nosetests -v sklearn来进行测试

网站首页 | 网站地图
All rights reserved Powered by www.cwlr.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com